同位素示踪技术

编辑:边界网互动百科 时间:2020-06-02 02:08:45
编辑 锁定
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
同位素示踪技术(isotopic tracer technique)是利用放射性同位素或经富集的稀有稳定核素作为示踪剂,研究各种物理化学生物环境材料等领域中科学问题技术。示踪剂是由示踪原子分子组成的物质示踪原子(又称标记原子)是其核性质易于探测的原子。含有示踪原子的 化合物,称为标记化合物。理论上,几乎所有的化合物都可被示踪原子标记。一种原子被标记的化合物,称为单标记化合物;两种原子被标记的化合物,则称为双标记化合物(如2H218O)。[1] 
中文名
同位素示踪技术
外文名
isotopic tracer technique
提出时间
1923年
提出者
G.von Hevesy

目录

同位素示踪技术原理

编辑
自然界中组成每个元素的稳定核素和放射性核素大体具有相同的物理性质化学性质,即放射性核素或稀有稳定核素的原子、分子及其化合物,与普通物质的相应原子、分子及其化合物具有相同的物理和化学性质。因此 ,可利用放射性核素或经富集的稀有稳定核素来示踪待研究的客观世界及其过程变化。通过放射性测量方法,可观察由放射性核素标记的物质的分布和变化情况;对经富集的稀有稳定核素或者可用质谱法直接测定,亦可用中子活化法加以测定。[1] 

同位素示踪技术历史

编辑
G.赫维西最初于1912年提出同位素示踪技术,并相继开展了许多同位素示踪研究。由于其开创性贡献,赫维西于1943年获诺贝尔化学奖。从20世纪30年代开始,随着重氢同位素和人工放射性的发现,同位素示踪技术开始广泛应用于基础科学应用科学的各个领域。[1] 

同位素示踪技术应用

编辑
同位素示踪技术在工业农业生物医学等众多领域中都有重要的应用价值。[1] 
  ①工业中的应用。在工业活动中,示踪原子为使用多种高性能的检测方法和生产过程自动控制方法提供了可能性,克服了传统检测方法难以完成甚至无法完成的难题。如石油工业中采用放射性核素示踪微球等方法测绘注水井吸水剖面,为评价地层,调整注水量的分配,实现石油的增产和稳产作出了贡献。在机械工业中可用85Kr)化技术进行机械磨损研究,测量一些其他方法不能完成的运动部件的最高工作温度温度分布。此外,这一灵敏度很高的85Kr检漏方法也在机械工业产品、机械零部件和金属真空系统的检漏,以及电子工业半导体器件的检漏中得到应用。在钢铁工业中,可用同位素示踪技术测定高炉炉壁的腐蚀程度。水利工程中可用来探测大坝的渗漏情况等。[1] 
  ②农业中的应用。主要应用于研究施肥方法、途径及其肥效杀虫剂和除莠剂对昆虫和杂草的抑制和杀灭作用;植物激素和生长刺激素对农作物代谢和功能的影响;激素维生素微量元素、饲料和药物对家畜生长和发育的影响;昆虫、寄生虫动物等的生命周期、迁徙规律、交配和觅食习性等。此外,正是由于放射性同位素14C的应用,导致了自然界中光合作用机理的发现。[1] 
  ③生物医学中的应用。主要应用于临床论断和医学研究方面。如2H和10O双标记的葡萄糖可用于研究人体能量的摄入和消耗过程;用51Cr标记方法可研究人体血量;用131I可研究甲状腺功能;用58Fe可研究缺铁性贫血;用放射性同位素或经富集的稀有稀土核素,可研究稀土元素生物体内的分布、蓄积和代谢规律;用18F标记的葡萄糖可研究脑血流量及其代谢活动等。[1] 
  ④环境研究中的应用。同位素示踪技术可用于研究环境各介质水圈土壤圈大气圈生物圈等)中污染物的分布、迁移和富集规律,从静态和动态两方面,研究污染物的时空特征。如用长寿命放射性核素36Cl标记有机卤族化合物,研究其在环境中的行为。用经富集的、稳定的196Hg或202Hg,研究在大气圈、水圈和生物圈中的转移、甲基化过程及其环境效应[1] 
  ⑤基础科学研究中的应用。同位素示踪技术已在物理、化学、生物、地学等基础研究中发挥了重要作用。典型例子有,用32P放射性同位素示踪揭示了DNA的结构以及RNA一级结构,再结合放射自显影法,即可阅读核苷酸顺序。此外,在化学反应机理及其动力学过程、天文地质学的一些重大基础问题(恐龙绝灭和铱异常陨石演化史等)、岩石学矿物学等研究中,同位素示踪都是一种重要的应用技术。[1] 
参考资料
  • 1.    词条作者:柴之芳.《中国大百科全书》74卷(第二版)物理学 词条:同位素示踪技术:中国大百科全书出版社,2009-07:439-440页
词条标签:
自然学科 科技 学科 专有名词